Analysis of unsteady behavior in shockwave turbulent boundary layer interaction
Grilli, M., Schmidt, P.J., Hickel, S., Adams, N.A. (2012)
Journal of Fluid Mechanics 700: 16-28. doi: 10.1017/jfm.2012.37
The unsteady behaviour in shockwave turbulent boundary layer interaction is investigated by analysing results from a large eddy simulation of a supersonic turbulent boundary layer over a compression–expansion ramp. The flow dynamics are analysed by a dynamic mode decomposition which shows the presence of a low-frequency mode associated with the pulsation of the separation bubble and accompanied by a forward–backward motion of the shock.
Large Eddy Simulation of turbulence enhancement due to forced shock motion in shock boundary layer interaction
Petrache, O.C., Hickel, S., Adams, N.A. (2011)
AIAA paper 2011-2216. doi: 10.2514/6.2011-2216
We present Implicit Large-Eddy Simulations of a shockwave-turbulent boundary layer interaction with and without localized heat addition. For an entropy spot generated ahead of the shock, baroclinic vorticity production occurs when the resulting density peak passes the shock.
Wall modeling for implicit large-eddy simulation and immersed-interface methods
Chen, Z.L., Hickel, S., Devesa, A., Berland, J., Adams, N.A. (2013)
Theoretical and Computational Fluid Dynamics 28: 1-21. doi: 10.1007/s00162-012-0286-6
We propose and analyze a wall model based on the turbulent boundary layer equations (TBLE) for implicit large-eddy simulation (LES) of high Reynolds number wall-bounded flows in conjunction with a conservative immersed-interface method for mapping complex boundaries onto Cartesian meshes. Both implicit subgrid-scale model and immersed-interface treatment of boundaries offer high computational efficiency for complex flow configurations.
Implicit LES applied to zero-pressure-gradient and adverse-pressure-gradient boundary-layer turbulence
Hickel, S., Adams, N.A. (2008)
International Journal of Heat and Fluid Flow 29: 626-639. doi: 10.1016/j.ijheatfluidflow.2008.03.008
Well resolved large-eddy simulations (LES) of a fully turbulent flat-plate boundary-layer flow subjected to a constant adverse pressure gradient are conducted. Flow parameters are adapted to an available experiment. The Reynolds number based on the local free-stream velocity and momentum thickness is 670 at the inflow and 5100 at the separation point. Clauser’s pressure-gradient parameter increases monotonically from 0 up to approximately 100 since a constant pressure gradient is prescribed. The adverse pressure gradient leads to a highly unsteady and massive separation of the boundary layer. The numerical predictions agree well with theory and experimental data.
Implicit large-eddy simulation applied to turbulent channel flow with periodic constrictions
Hickel, S., Kempe, T., Adams, N.A. (2008)
Theoretical and Computational Fluid Dynamics 22: 227-242. doi: 10.1007/s00162-007-0069-7
The subgrid-scale (SGS) model in a large-eddy simulation (LES) operates on a range of scales which is marginally resolved by discretization schemes. Accordingly, the discretization scheme and the subgrid-scale model are linked. One can exploit this link by developing discretization methods from subgrid-scale models, or the converse. Approaches where SGS models and numerical discretizations are fully merged are called implicit LES (ILES).